当前位置: 首页 > 建站教程

如何在PyTorch中进行模型评估

时间:2026-02-01 13:24:23

在PyTorch中进行模型评估通常需要以下步骤:

    导入所需的库和模型:
import torchimport torch.nn as nnimport torch.optim as optimimport torchvisionfrom torchvision import transforms, datasets
    加载测试数据集:
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
    加载模型:
model = YourModel()model.load_state_dict(torch.load('model.pth'))model.eval()
    定义评估函数:
def evaluate_model(model, test_loader):correct = 0total = 0with torch.no_grad():for images, labels in test_loader:outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = correct / totalprint('Accuracy of the model on the test set: {:.2f}%'.format(accuracy * 100))
    调用评估函数:
evaluate_model(model, test_loader)

这样你就可以在PyTorch中对模型进行评估了。


上一篇:PyTorch中如何进行模型监督学习
下一篇:什么是PyTorch Hub
pytorch
  • 英特尔与 Vertiv 合作开发液冷 AI 处理器
  • 英特尔第五代 Xeon CPU 来了:详细信息和行业反应
  • 由于云计算放缓引发扩张担忧,甲骨文股价暴跌
  • Web开发状况报告详细介绍可组合架构的优点
  • 如何使用 PowerShell 的 Get-Date Cmdlet 创建时间戳
  • 美光在数据中心需求增长后给出了强有力的预测
  • 2027服务器市场价值将接近1960亿美元
  • 生成式人工智能的下一步是什么?
  • 分享在外部存储上安装Ubuntu的5种方法技巧
  • 全球数据中心发展的关键考虑因素
  • 英特尔与 Vertiv 合作开发液冷 AI 处理器

    英特尔第五代 Xeon CPU 来了:详细信息和行业反应

    由于云计算放缓引发扩张担忧,甲骨文股价暴跌

    Web开发状况报告详细介绍可组合架构的优点

    如何使用 PowerShell 的 Get-Date Cmdlet 创建时间戳

    美光在数据中心需求增长后给出了强有力的预测

    2027服务器市场价值将接近1960亿美元

    生成式人工智能的下一步是什么?

    分享在外部存储上安装Ubuntu的5种方法技巧

    全球数据中心发展的关键考虑因素