深度学习中残差网络的结构有什么特点


    跳跃连接:残差网络使用了跳跃连接,将输入与输出相加,将残差映射为恒等映射。这种设计可以使得网络更容易学习残差,从而加速收敛和提高性能。

    残差块:残差网络的基本单元是残差块,每个残差块包含多个卷积层和跳跃连接。这种结构可以有效地学习不同层次的特征,并且降低了梯度消失的风险。

    深度网络:残差网络可以构建非常深的网络,因为跳跃连接可以帮助梯度传播更容易地达到较深的层次,从而实现更好的性能。

    非线性:残差网络中每个残差块都包含非线性激活函数,例如ReLU,用于增加网络的表达能力。

    全局平均池化:在残差网络的末尾通常会使用全局平均池化层替代传统的全连接层,这可以减少参数数量,降低过拟合的风险,同时提高模型的泛化能力。


上一篇:access怎么设置字段不允许为空

下一篇:springboot的工作流程是什么


深度学习
Copyright © 2002-2019 测速网 www.inhv.cn 皖ICP备2023010105号
测速城市 测速地区 测速街道 网速测试城市 网速测试地区 网速测试街道
温馨提示:部分文章图片数据来源与网络,仅供参考!版权归原作者所有,如有侵权请联系删除!

热门搜索 城市网站建设 地区网站制作 街道网页设计 大写数字 热点城市 热点地区 热点街道 热点时间 房贷计算器